
ON GEOMETRIC PROOFS OF THEOREMS ON SUMS OF SQUARES

STEVE FAN

Abstract. This short note discusses some interesting geometric proofs of the classical
theorems on sums of two squares, three squares and four squares.

1. Introduction

An old and interesting problem in number theory concerns the representations of a given
positive integers as the sum of a fixed number of integral squares. Precisely speaking, given
a fixed positive integer k, we would like to determine for which positive integers n there exist
integers x1, ..., xk such that

n =
k∑
i=1

x2
i .

The case k = 1 is trivial. Fermat considered the case k = 2 for primes n = p. He showed
that a prime congruent to 3 modulo 4 cannot be written as the sum of two squares. He also
observed that a prime congruent to 1 modulo 4 is a sum of two squares. The generalization to
all positive integers n was already described in 1625 by Girard before Fermat. Neither Girard
nor Fermat provided proofs of their observations. The first proof was discovered by Euler
in the mid 1700s. The case k = 4 was resolved by Lagrange in 1770. He proved that every
positive integer can be represented as the sum of four squares. Lagrange’s proof is based on
Euler’s early attempts and is completely elementary. During 1797-1798 Legendre proved that
a positive integer n can be written as the sum of three squares precisely when n is not of the
form 4a(8b+7) for some non-negative integers a and b. His proof is based on the arithmetical
theory of binary and ternary quadratic forms. In 1801 Gauss generalized Legendre’s result
by determining the number of representations of an integer as the sum of three squares. It
is now known that the general case can be explained nicely by the theory of modular forms.
Nowadays we have many different proofs of the results of Fermat, Lagrange and Legendre
that make use of ideas and tools from various branches of mathematics, such as algebraic
number theory, complex analysis (especially, the theory of modular forms), Diophantine
approximation, and geometry of numbers. In this note, we shall discuss interesting proofs
using ideas from geometry of numbers, a subject invented by Hermann Minkowski.

2. Minkowski’s First Theorem

Recall that an n-dimensional lattice Λ ⊆ Rn is an additive subgroup of Rn which is spanned
by an R-basis of Rn over Z. It is not hard to show that two n-dimensional lattices are the
same if and only if one can be obtained from the other by a unimodular transformation (i.e.,
a linear transformation T : Rn → Rn with [T ] ∈ Mn×n(Z) and det[T ] = ±1). Suppose that
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Λ is spanned by v1, ..., vn. The fundamental parallelotope spanned by v1, ..., vn is defined by

P :=

{
n∑
i=1

aivi : a1, ..., an ∈ [0, 1]

}
.

If we think of v1, ..., vn as row vectors in Rn, then the volume V of P is easily seen to
be V = | det(vT1 , ..., v

T
n )|. This quantity is clearly invariant under change of basis (via a

unimodular transformation). We denote it by vol(Rn/Λ). We shall also speak of “bodies” in
Rn. A body B ⊆ Rn in the broad sense is a Lebesgue measurable subset of Rn. Its volume
vol(B) is defined to be the same as its Lebesgue measure. It is called convex if for any two
points x, y ∈ B, one has λx + (1 − λ)y ∈ B for all λ ∈ [0, 1]. It is said to be centrally
symmetric if x ∈ B implies −x ∈ B. Our main tool is the following theorem of Minkowski.

Theorem 2.1 (Minkowski’s First Theorem). Let Λ ⊆ Rn be a lattice and let B ⊆ Rn

be a convex centrally symmetric body. If vol(B) > 2n vol(Rn/Λ), then B contains a point
x ∈ Λ \ {0}.

Proof. Let P be a fundamental parallelotope of Λ. Note that Rn is covered by the non-
overlapping family {x + P}x∈Λ of copies of P . It follows that (1/2)B is covered by the
non-overlapping family {(1/2)B ∩ (x+ P)}x∈Λ. Since vol((1/2)B) = vol(B)/2n, we have

vol(Rn/Λ) < vol

(
1

2
B

)
=
∑
x∈Λ

vol

(
1

2
B ∩ (x+ P)

)
=
∑
x∈Λ

vol

((
1

2
B − x

)
∩ P

)
,

where we have used the fact that the Lebesgue measure is translation-invariant. If the
elements of {(1/2)B − x}x∈Λ were pairwise disjoint, then∑

x∈Λ

vol

((
1

2
B − x

)
∩ P

)
= vol

(
P ∩

⋃
x∈Λ

(
1

2
B − x

))
≤ vol(P) = vol(Rn/Λ),

a contradiction. Hence there must exist two distinct points x, y ∈ Λ such that ((1/2)B −
x)∩ ((1/2)B− y) 6= ∅. Let z ∈ ((1/2)B−x)∩ ((1/2)B− y). Then we have 2(z+x) ∈ B and
2(z + y) ∈ B. Since B is centrally symmetric, we have −2(z + y) ∈ B. By the convexity of
B, we find that

x− y =
1

2
[2(z + x)− 2(z + y)] ∈ B.

Since x− y ∈ Λ \ {0}, we conclude that x− y ∈ B ∩ (Λ \ {0}). �

The above proof is borrowed from [5]. For alternative proofs, see [4, §3.10], for instance.

3. Sums of Two Squares

We start with Fermat’s theorem that every prime p ≡ 1 (mod 4) can be expressed as the
sum of two squares.

Theorem 3.1 (Fermat’s Theorem). Every prime p ≡ 1 (mod 4) can be expressed as the sum
of two squares.

Proof. Since p ≡ 1 (mod 4), there exists a ∈ Z for which a2 +1 ≡ 0 (mod p). Let us consider
the lattice

Λ := {(x, ax+ py) ∈ Z2 : x, y ∈ Z} (1)
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with basis v1 = (1, a) and v2 = (0, p). Then vol(R2/Λ) = p. Let D ⊆ R2 be the open disk of
radius

√
2p centered at the origin. Then vol(D) = 2πp > 4 vol(R2/Λ). By Theorem 2.1 we

see that D contains a non-zero point (x, ax+ py) ∈ Λ. Since

x2 + (ax+ py)2 ≡ (1 + a2)x2 ≡ 0 (mod p)

and 0 < x2 + (ax+ py)2 < 2p, we must have x2 + (ax+ py)2 = p. �

Grace [3] provides a geometric proof of Theorem 3.1 without using Minkowski’s theorem.
Instead, he appeals to the fact from algebra that an additive subgroup of Rn is a lattice if
and only if it is discrete (see [6, Proposition 4.2]). His proof is constructive compared to the
one above in that it tells us how to find a pair (x, y) ∈ Z for which p = x2 + y2 for any given
prime p ≡ 1 (mod 4). We now present a modified version of Grace’s proof of Theorem 3.1
that does not use the fact from algebra mentioned above.

Grace’s Proof of Theorem 3.1. Consider the lattice Λ defined as in (1). Let A = (ξ, η) =
(x, ax+ py) ∈ Λ be a non-zero point in Λ such that

‖A‖ =
√
ξ2 + η2 = min

X∈Λ\{(0,0)}
‖X‖.

Then A′ := (−η, ξ) is also a point in Λ, since A′ = (x′, ax′ + py′) with x′ = −ax − py and
y′ = ay + (a2 + 1)x/p. By construction, we have Λ ∩ 4OAA′ = {O,A,A′}. Let P be the
parallelogram with OA and OA′ being its two adjacent sides. Then P is a fundamental
parallelogram of Λ, since P contains no other points in Λ than its vertices. It is in fact a
square with area p = ξ2 + η2. �

Remark 1. We give a concrete example illustrating Grace’s method. Let A = (ξ, η) =
(x, ax+ py) ∈ Λ be a non-zero point in Λ and consider

‖A‖2 = x2 + (ax+ py)2 = (a2 + 1)x2 + 2apxy + p2y2 =
p

m
[(mx+ ay)2 + y2],

where m = (a2 + 1)/p. To obtain a representation of p as the sum of two squares, we need
only to minimize the quadratic form

Q(x, y) := (mx+ ay)2 + y2

for (x, y) ∈ Z2 \ {(0, 0)}. In practice, one can choose 1 ≤ a < p/2 so that

1 ≤ m ≤ p2 − 2p+ 5

4p
≤ p− 1

4
.

For example, let p = 13 and take a = 5. Then m = 2. We need to minimize Q(x, y) =
(2x+5y)2 +y2 for (x, y) ∈ Z2\{(0, 0)}. Observe that Q(x, y) ≡ 0 (mod 2) for any (x, y) ∈ Z2

and that Q(3,−1) = 2. Thus the pair (x, y) = (3,−1) generates a representation of 13 as
the sum of two squares: 13 = x2 + (5x+ 13y)2 = 32 + 22.

It is now an easy exercise to derive the following result [4, Theorem 366] from Theorem
3.1 by using the identity

(a2 + b2)(c2 + d2) = (ac+ bd)2 + (ad− bc)2

and the fact that for any prime p ≡ 3 (mod 4), the congruence x2 ≡ −1 (mod p) is unsolvable.

Theorem 3.2. A positive integer n can be expressed as the sum of two squares if and only
if all primes p ≡ 3 (mod 4) have even exponents in the prime factorization of n.
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4. Sums of Four Squares

Now we prove Lagrange’s four-square theorem [4, Theorem 369] using Theorem 2.1. The
proof is borrowed from [2]. It is a natural extension of the proof of Theorem 3.1 in the sense
that the convex centrally symmetric body we shall consider here is the four dimensional ball.
We first prove the following lemma which serves as a substitute for the fact that (−1/p) = 1
for all primes p ≡ 1 (mod 4) used in the proof of Theorem 3.1.

Lemma 4.1. For any odd positive integer n, there exist a, b ∈ Z such that a2 + b2 + 1 ≡
0 (mod n).

Proof. By the Chinese remainder theorem, it suffices to prove our lemma for odd prime
powers n = pv. For v = 1, consider the subsets

A := {a2 : 0 ≤ a < p/2} ⊆ Z/pZ,
B := {−b2 − 1: 0 ≤ b < p/2} ⊆ Z/pZ.

Then #A = #B = (p + 1)/2. It follows that #A + #B > p. By the pigeonhole principle
there exist 0 ≤ a, b < p/2 for which a2 ≡ −b2 − 1 (mod p).

Let v ≥ 2 and suppose that there exist a0, b0 ∈ Z such that a2
0 + b2

0 + 1 ≡ 0 (mod pv−1).
Without loss of generality, we may assume p - a0. Choose k ∈ Z for which

2ka0 ≡ −
1 + a2

0 + b2
0

pv−1
(mod p).

Then we have

(a0 + kpv−1)2 + b2
0 ≡ a2

0 + 2ka0p
v−1 + b2

0 ≡ −1 (mod pv).

By induction, for any v ≥ 1 there exist a, b ∈ Z for which a2 + b2 + 1 ≡ 0 (mod pv). �

We are now able to prove Lagrange’s theorem.

Theorem 4.2 (Lagrange’s Four-Square Theorem). Every positive integer n can be expressed
as the sum of four squares.

Proof. Suppose first that n is odd. By Lemma 4.1 we can find a, b ∈ Z such that a2 +b2 +1 ≡
0 (mod n). Consider the lattice

Λ := {(nx1 + ax3 + bx4, nx2 + bx3 − ax4, x3, x4) : x1, x2, x3, x4 ∈ Z}

with basis v1 = (n, 0, 0, 0), v2 = (0, n, 0, 0), v3 = (a, b, 1, 0) and v4 = (b,−a, 0, 1). Since

det(vT1 , v
T
2 , v

T
3 , v

T
4 ) = det


n 0 a b
0 n b −a
0 0 1 0
0 0 0 1

 = n2,

we have vol(R4/Λ) = n2. Let B ⊆ R4 be the open ball of radius
√

2n centered at the origin.
We compute by means of the spherical coordinates

vol(B) = (2n)2

∫ π

0

sin2 ϕ1 dϕ1

∫ 2π

0

∫ π

0

sinϕ2 dϕ2dϕ3

∫ 1

0

r3 dr = 2π2n2 > 24 vol(R4/Λ).
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It follows by Theorem 2.1 that B contains a non-zero point (nx1 + ax3 + bx4, nx2 + bx3 −
ax4, x3, x4) ∈ Λ. Since

(nx1 + ax3 + bx4)2 + (nx2 + bx3 − ax4)2 + x2
3 + x2

4 ≡ (a2 + b2 + 1)(x2
3 + x2

4) ≡ 0 (mod n)

and
0 < (nx1 + ax3 + bx4)2 + (nx2 + bx3 − ax4)2 + x2

3 + x2
4 < 2n,

we conclude that

(nx1 + ax3 + bx4)2 + (nx2 + bx3 − ax4)2 + x2
3 + x2

4 = n.

This proves the theorem when n is odd.
Suppose now that n is even. Writing n = 2vm, where m and v are positive integers with

2 - m, we can find x1, x2, x3, x4 ∈ Z such that m = x2
1 + x2

2 + x2
3 + x2

4. If v is even, then

n = (2v/2x1)2 + (2v/2x2)2 + (2v/2x3)2 + (2v/2x4)2.

If v is odd, then

n = [2(v−1)/2(x1 + x2)]2 + [2(v−1)/2(x1 − x2)]2 + [2(v−1)/2(x3 + x4)]2 + [2(v−1)/2(x3 − x4)]2.

This completes the proof of the theorem. �

It is worth noting that we need only to appeal to Lemma 4.1 for primes m = p in order
to prove Lagrange’s theorem if we make use of the following identity of Euler:

(x2
1 + x2

2 + x2
3 + x2

4)(y2
1 + y2

2 + y2
3 + y2

4) = A2 +B2 + C2 +D2,

where

A = x1y1 + x2y2 + x3y3 + x4y4,

B = x1y2 − x2y1 + x3y4 + x4y3,

C = x1y3 − x3y1 + x4y2 − x2y4,

D = x1y4 + x4y1 + x2y3 + x3y2.

This identity, which looks uncanny at first glance, can in fact be obtained by considering the
the product of the quaternions X = x1 + x2i + x3j + x4k and Y = y1 + y2i + y3j + y4k and
observing that N(XY ) = N(X)N(Y ), where

N(X) := (x1 + x2i + x3j + x4k)(x1 − x2i− x3j− x4k) = x2
1 + x2

2 + x2
3 + x2

4.

5. Sums of Three Squares

Finally, we turn to Legendre’s three-square theorem. Observe that if n = 4a(8b + 7) is a
positive integer, then n is not representable by a sum of three squares. Indeed, assume that

n = x2
1 + x2

2 + x2
3

for some x1, x2, x3 ∈ Z. If a ≥ 1, then

x2
1 + x2

2 + x2
3 ≡ n ≡ 0, 4 (mod 8).

But x2
i ≡ 0, 1, 4 (mod 8) for each 1 ≤ i ≤ 3. It follows that x1, x2, x3 are all even. By

induction, we have that x1, x2, x3 are all divisible by 2a. Thus

8b+ 7 = (x1/2
a)2 + (x2/2

a)2 + (x3/2
a)2.
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This is impossible, since the right-hand side cannot be congruent to 7 modulo 8. Hence it is
sufficient to show that every positive integer n 6= 4a(8b+ 7) can be expressed as the sum of
three squares, and it will suffice to prove this for square-free n. To the author’s knowledge,
there are no easy proofs of this. Here we follow Ankeny [1] to give a geometric proof based on
Minkowski’s theorem. In the proof below, we shall also make use of the quadratic reciprocity
law as well as Dirichlet’s theorem on primes in arithmetic progressions which asserts that
for any integers k and l with k ≥ 1 and gcd(k, l) = 1, the arithmetic progression {kn+ l}∞n=1

contains infinitely many primes.

Theorem 5.1 (Legendre’s Three-Square Theorem). Let n be a positive integer which is not
of the form 4a(8b+ 7). Then n can be expressed as the sum of three squares.

Proof. Throughout the proof, we shall always assume that n is square-free. Then n ≡
1, 2, 3, 5, 6 (mod 8). Suppose that n = 2km, where k ∈ {0, 1} and 2 - m. By Dirichlet’s
theorem on primes in arithmetic progressions and the Chinese remainder theorem, there
exists a prime q ≡ 1 (mod 4) such that(

−2k

q

)
= (−1)k(m−1)/2 (2)

and (
−2lq

p

)
= 1 (3)

for all prime factors p of m, where (·/·) is the Jacobi symbol and

l =

{
1 if n ≡ 3 (mod 8),

0 otherwise.

Note that
k(m− 1)

2
≡ m− 1

2
+ l (mod 2),

which implies that (
−2l

m

)
=

(
−1

m

)(
2l

m

)
= (−1)(m−1)/2+l =

(
−2k

q

)
.

It is easy to see by the law of quadratic reciprocity that(
−n
q

)
=

(
−2k

q

)∏
p|m

(
p

q

)
=

(
−2k

q

)∏
p|m

(
q

p

)
=

(
−2k

q

)(
−2l

m

)∏
p|m

(
−2lq

p

)
= 1.

Thus there exists u ∈ Z for which u2 ≡ −n (mod 4lq). By (3) and the Chinese remainder
theorem, there exists v ∈ Z for which v2 ≡ −α (mod n), where 0 < α < n is an integer such

that 2lqα ≡ 1 (mod n). Put β :=
√

2lq and consider the lattice

Λ := {(β2vx+ uvy + nz, βx+ uβ−1y,
√
nβ−1y) : x, y, z ∈ Z}

with basis v1 = (β2v, β, 0), v2 = (uv, uβ−1,
√
nβ−1) and v3 = (n, 0, 0). Since

det(vT1 , v
T
2 , v

T
3 ) = det

β2v uv n
β uβ−1 0
0
√
nβ−1 0

 = n3/2,
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we have vol(R4/Λ) = n3/2. Let B ⊆ R3 be the open ball of radius
√

2n centered at the
origin. Then

vol(B) =
4π

3
(2n)3/2 =

8
√

2π

3
n3/2 > 23 vol(R4/Λ).

It follows by Theorem 2.1 that B contains a non-zero point (X, Y, Z) = (β2vx + uvy +
nz, βx+ uβ−1y,

√
nβ−1y) ∈ Λ. Note that X ∈ Z and

X2 + Y 2 + Z2 = (2lqvx+ uvy + nz)2 +
(2lqx+ uy)2 + ny2

2lq
(4)

with
(2lqx+ uy)2 + ny2

2lq
= x(2lqx+ 2uy) +

(u2 + n)y2

2lq
∈ Z.

It follows that
X2 + Y 2 + Z2 ≡ (v2 + α)(2lqx+ uy)2 ≡ 0 (mod n).

Since 0 < X2 + Y 2 + Z2 < 2n, we conclude that X2 + Y 2 + Z2 = n.
It is sufficient to show that

Y 2 + Z2 =
(2lqx+ uy)2 + ny2

2lq
(5)

is a sum of two squares. By Theorem 3.2, it suffices to show that all odd prime factors of
Y 2 + Z2 with odd exponents are congruent to 1 modulo 4. Let p > 2 be a prime factor of
Y 2 + Z2 with an odd exponent t ≥ 1. Suppose first that p - n. By X2 + Y 2 + Z2 = n we
have (n/p) = 1. If p = q, then (−n/p) = 1, since u2 ≡ −n (mod 4lq); if p 6= q, then it
follows from (5) that pt ‖ [(2lqx+uy)2 +ny2] and hence (−n/p) = 1. In either case, we have
(−1/p) = 1, which is equivalent to p ≡ 1 (mod 4). Suppose now that p | n. Then p 6= q,
p | (2lqx+ uy) and p | X. It follows from (4) and the equation X2 + Y 2 + Z2 = n that

(2lqx+ uy)2 + ny2 ≡ 2lqn (mod p2),

which implies that ny2 ≡ 2lqn (mod p2). Since p ‖ n, we obtain y2 ≡ 2lq (mod p). Thus
(2lq/p) = 1. Comparing this with (3) we have (−1/p) = 1. Again, this gives p ≡ 1 (mod 4).
This completes the proof. �

Remark 2. Note that the proof breaks down for square-free n ≡ 7 (mod 8) as expected,
because in this case one would have (−1/n) = (−2/n) = −1.
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